skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wenzel, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Covalent integration of polymers and porous organic frameworks (POFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), represent a promising strategy for overcoming the existing limitations of traditional porous materials. This integration allows for the combination of the advantages of polymers, i.e., flexibility, processability and chemical versatility etc., and the superiority of POFs, like the structural integrity, tunable porosity and the high surface area, creating a type of hybrid materials. These resulting polymer-POF hybrid materials exhibit enhanced mechanical strength, chemical stability and functional diversity, thus opening up new opportunities for applications across a large variety of fields, such as gas separation, catalysis, biomedical applications, environmental remediation and energy storage. In this review, an overview of synthetic routes and strategies on how to covalently integrate different polymers with various POFs is discussed, especially with a particular focus on methods like polymerization within, on and among POF structures. To investigate the unique properties and functions of these resultant hybrid materials, the characterization techniques, including nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), gas adsorption analysis (BET) and computational modeling and machine learning, are also presented. The ability of polymer-POFs to manipulate the pore environments at the molecular level affords these materials a wide range of applications, providing a versatile platform for future advancements in material science. Looking forward, to fully realize the potential of these hybrid materials, the authors highlight the scalability, green synthesis methods, and potential for stimuli-responsive polymer-POF materials as critical areas for future research. 
    more » « less
    Free, publicly-accessible full text available December 18, 2025
  2. A quinoxaline-based covalent organic framework (COF) was synthetically cross-linked and investigated for membrane applications.Ab initiocalculations were conducted to investigate the stability of cross-linked COFs. 
    more » « less
  3. Green plants (Viridiplantae) include around 450,000–500,000 species of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life. 
    more » « less